A model for two-component aerosol coagulation and phase separation: a method for changing the growth rate of nanoparticles

نویسندگان

  • Y. Efendiev
  • M. R. Zachariah
چکیده

In previous studies of particle growth we have synthesized binary metal oxide aerosols and have observed the evolution of internal phase segregation during growth of molten nanodroplets. We have also generated NaCl=metal aerosols in which the metal nanoparticle is enveloped within a salt droplet. In both systems the nanoparticles were grown in the molten state. In this paper we propose a model which incorporates phase segregation in a binary aerosol. The model assumes that complete phase segregation is the thermodynamically favored state, that no thermodynamic activation energy exists, and that the phase segregation process is kinetically controlled. The results indicate that a steady state behavior can be reached in which the characteristic time for aerosol coagulation and the characteristic time for the growth of the minority phase coincide such that the number of distinct segregated entities within each aerosol droplet is constant. The results suggest what we believe to be an important concept that can be utilized in materials synthesis. This is that the major phase can be used to moderate the growth rate of the minor phase by changing the characteristic encounter frequency and therefore the eventual growth rate of the minority phase. In particular, temperature, which does not play an important role in aerosol coagulation, is seen to be a very sensitive parameter for the growth of the minority phase nanoparticles. We discuss the parameter space necessary for this to occur. ? 2001 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid monte carlo method for simulation of two-component aerosol coagulation and phase segregation.

The paper presents the development of a hybrid Monte Carlo (MC) method for the simulation of the simultaneous coagulation and phase segregation of an immiscible two-component binary aerosol. The model is intended to qualitatively model our prior studies of the synthesis of mixed metal oxides for which phase-segregated domains have been observed in molten nanodroplets. In our previous works (J. ...

متن کامل

A model for enhanced heat transfer in an enclosure using Nano-aerosols

In this study, the behavior of nanoparticles using a numerical model is discussed. For this study a model for the expansion in free convection heat transfer and mix in a rectangular container with dimensions of 1 × 4 cm using Nano-aerosols in the air is going when copper nanoparticles, use and by changing the temperature difference between hot and cold wall, we will examine its impact on the ra...

متن کامل

Dispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model

Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...

متن کامل

A Theoretical Mass Transfer Approach for Prediction of Droplets Growth Inside Supersonic Laval Nozzle

Proper estimation of droplet growth rate plays a crucial role on appropriate prediction of supersonic separators performance for separation of fine droplets from a gas stream. Up to now, all available researches employ empirical or semi-empirical correlations to define the relationship between droplet growth rate (dr/dt) and other operating variables such as temperatures (T and TL), Pressure (P...

متن کامل

Separation of Somatropin and Its Degradation Products by High-Performance Liquid Chromatography Using a Reversed-Phase Polymeric Column

The accurate prediction of protein stability is one of the most challenging goals in protein formulation and delivery. In this study, a gradient RP-HPLC method is described for the separation of human growth hormone (hGH) variants as deamidated and oxidized forms. The methodology employed a polymeric poly (styrene-co-divinylbenzene) column and a 1mL/min flow rate of a linear gradient of 0.1% v/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001